If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-60q-50=0
a = 2; b = -60; c = -50;
Δ = b2-4ac
Δ = -602-4·2·(-50)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-20\sqrt{10}}{2*2}=\frac{60-20\sqrt{10}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+20\sqrt{10}}{2*2}=\frac{60+20\sqrt{10}}{4} $
| 4x-7=112 | | 2x-22+2x+40=180 | | 12=w-6 | | 0=-0.02x^2+1x+0.5 | | 2e+15=7e | | 12+c=9 | | -6m=-5m−9 | | 10−4r=-10+6r | | 3+v=4 | | x/4/3=3 | | 0=-0.2x^2+1x+0.5 | | 24−45t=16. | | 8h−4h=4h | | 125+3x=30x | | 3+2=4s | | 2z+9z=1 | | -1x+1=-1x+1 | | 3=8t | | -10v+10=-9v | | 11-8=9-s | | 1/4m-6=2(m-9) | | 4.3+10m=7.27 | | 3(x+5)=8x+11-5x+4 | | 5-v=6 | | 2q^2-60q=0 | | $$-x^2+20x=100$$ | | 2x+6+90=120 | | 6x-6=9x+15 | | 23x+5=64x−7 | | x+18=4x-27 | | 3=c+8 | | 4x+24=12×x |